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Contributions
A method for eliciting evoked questions and their answers.

▶ Rich new source of pragmatic data!

▶ Scalable method for (partial) QUD-annotation (cf. [1])!

▶ Exclusive preview of research application [2]!

M. Westera, L. Mayol & H. Rohde (under review)

3 Source texts

2. Next sentences revealed; check if answered

3. Enter a new question

▶ Ibex experiment (customized); hosted on IbexFarm;

▶ Participants recruited through MTurk ($8.50);

▶ Task: 6 excerpts of up to 18 sentences; revealed

▶ 6 TED-talks (6975 words) from TED-MDB [3].

▶ 2 dialogues (3807 words) from DISCO-SPICE [4].

▶ 1 short story (56 words) we constructed as a sanity check.

     incrementally with probe every 2 sentences:

▶ 111 participants, >5 per probe point, 863 probes.

▶ 4765 questions, 1965 answers, and their highlighted triggers.

▶ Example (DISCO-SPICE p1a-094,      ):

http://evoque-data.github.io/

http://spellout.net/ibexexps/mwestera/evoque/experiment.html

Constructed story

TED talks

SPICE dialogues
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DISCO-SPICE TED-talks

▶ ANSWERED: other > what, aux, why > how (>) where, who, when

▶ Evoked questions' ANSWERED ≈ QUD predictability.

▶ TED-MDB [3] has discourse relation annotations,
 

▶ Evidence in favor of hypothesis.

Hypothesis: discourse structure is more explicitly marked, 
in places where it is less predictable.

t(1580)=2.39
p=.016

t(2219)=4.71
p<.0001
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EXCLUSIVE PREVIEW!

PDTB-style, i.e., as implicit/explicit connectives.

Compared to previous work:

▶ [5] relied on coarse generalizations, e.g., 
 

▶ Evoked questions let us quantify predictability in

"causal relations are more predictable";

     a data-driven way, for all relations, in context.

▶ Highlighted triggers: what could these be used to shed light on?

▶ "Which question does it evoke?"
 

▶ Inter-annot. agreement: crowdsourced meta-annotations [2].

                 ≠ "What do you think will be the next QUD?"

He was uh he was a bit upset on uh uhm first day the Friday 

  

 

[...] The oul side-effects of the medication

Why was he upset on his first day? / Why was he upset? / He was upset about what? / Why 
was he upset? / What happened to him? / What happened to upset him? / Is he better 
now? / Why was he upset? / Why was he upset? / Why is he upset? / Why was he upset?

▶ More general:


